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Performance of the SMLR Deconvolution Algorithm
Chong-Yung Chi

Abstract—In this correspondence, we present a performance analysis
regarding false alarms, correct detections, and the resolution of the
well-known suboptimal maximum-likelihood deconvolution (MLD) al-
gorithm, called the single most likely replacement (SMLR) algorithm.
We assume that the source wavelet and statistical parameters are given
a priori. We analytically show that the performance improves as the
signal-to-noise ratio (SNR) increases and as the mainlobe width of the
normalized autocorrelation function of the source wavelet decreases.
For the same performance, a higher SNR is required as the mainlobe
width of the normalized autocorrelation function increases. We also
show some simulation results which are consistent with the analytic
results.

1. INTRODUCTION

Seismic deconvolution deals with the estimation of the reflectiv-
ity sequence u(k) with noisy measurements k), k=1,2,+"-,
N, based on the convolutional model

k) = p(ky * v(k) + n(k) = ;0 viyptk — i) + nl (D)

where n(k) is the measurement noise and »(k) is the source wavelet.
In the past decade, Mendel [1], Kormylo [2], Kormylo and Mendel
{3] proposed a Bernoulli-Gaussian (B-G) model for the reflectivity
sequence p(k) as follows:

wk)y = r(k) - q(k) @

where r(k) is a white Gaussian random process with zero mean and
variance o2 and g(k) is a Bernoulli process for which

A, qk) =1
1 — A, qk) = 0.

Kormylo and Mendel [3] developed a suboptimal maximum-like-
lihood deconvolution (MLD) algorithm, called the single most
likely replacement (SMLR) algorithm, based on the B-G model and
the assumption that n(k) is white Gaussian with zero mean and
variance 2. This algorithm performs well and is computationally
efficient [4], [S]. Other algorithms for estimating the B-G signal
u(k) with z(k), k = 1,2, » + - , N, can be found in [6]1-[10].
Regarding the performance of the SMLR algorithm, we observed
that for some wavelets there are fewer false alarms and more cor-
rect detections, while for some other wavelets there are many false
alarms and missing detections even when the signal-to-noise ratio

P g0} = { 3

il
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(SNR) is the same. These observations motivated a performance
analysis.

In this correspondence, we assume that statistical parameters N,
o2, 02 and the source wavelet v(k) are given a priori and present,
in addition to SNR, which characteristics of v(k) determine the per-
formance of the SMLR algorithm. In Section II, we briefly review
the background of the SMLR deconvolution algorithm for detection
of g(k) and estimation of r(k). We then present the associated per-
formance analysis for the SMLR algorithm in Section I1I. In Sec-
tion IV, some simulation results are shown to support the proposed
analysis. Finally, we draw some conclusions from this analysis.

II. BACKGROUND OF THE SMLR DECONVOLUTION ALGORITHM

The convolutional model (1) can be expressed in the following
linear vector form:

z=VQr+n 4)
, 2N)Y, Q@ = diag (g(1), 4(2), * - -,

, rN)Y, no= (1), n(2), * -,
, vy) in which

where z = (z(1), 2(2), - - -
gN)Y), r= (), r@, -
nN) and V = (v, v5, * **

v, = (0,0, -, 00, -, v(N—k). (5)

The covariance matrix € of z is given by
Q = Elz'|q) = 02VQV' + oi] (6)
where ¢ = (q(1), ¢(2), * -+ , g(N)) and I isan N X N identity

matrix.
The SMLR algorithm is an iterative algorithm for detecting g(k)
based on the log-likelihood ratio

S{alz}
S{q.lz}

where ${q |z} = p(z|q), ¢. is a reference sequence and g, is a test
sequence which differs from g, only at a single time location k. The
detection procedure [3] is summarized as follows:

a) Compute In A(k, g,) fork =1,2, -, N.

b) Assume that In A(k’, ¢,) = max {In Ak, q,), 1 =k <N}
Ifln A(k', ¢,) > O, update g, (k') by 1 — g,(k") and go to (a).

When In A(k, ¢,) < Oforall1 < k < N, the detection proce-
dure is finished. The log-likelihood ratio In A(k, ¢,) was shown
[3] to be

In Ak, g¢,) = In (@)

1 o2f1(1 — 2¢,(k)
21+ o2(1 — 2¢,(0)e

In Ak, q,) =

- I+ o3 - 2g0)al

+ (1 = 2¢,(k) In <1 i )\> ®)
where

fi=v9 'z ®

a, = Q7 v, (10)

and @, = Q(q = ¢,) (see (6)).

After detection of g, the maximum-likelihood estimate, ry,
which is also equal to the minimum-variance estimate ryy because
r and z are jointly Gaussian when g(k) is known, is given by [1],

1053-587X/91/0900-2082$01.00 © 1991 IEEE



IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 39. NO. 9, SEPTEMBER 1991 2083

[10]-[12]
na®) = ruy®) = Elr® |zl = o7q(k) fi. (11)

Let us define SNR and the normalized autocorrelation function

v (k) of v(k) for easy later use. SNR is defined as the ratio [1], [13]
of the signal power to noise power, i.e.,

_ E[(pk) * (k)] _ Note(©) _

= = s =

SNR 5
UI! U!l

AF (12)

where F = 02¢(0)/02 and

o) = v(k) * v(—k) = _ZO v(jyv(j + k) = viv  (13)

is the autocorrelation function of v(k). v (k) is defined as

e k)
ky = ——. 14
v (k) ) (14)
Note that the v (0) = 1, y(k) = y(—k), and |y (k)| < L. Finally,
we assume that F = SNR/N\ >> 1 because N is generally very
small.

III. PERFORMANCE ANALYSIS

Let P, (k' = k) denote the probability of k' = k where k € {1,2,
- -+, N}. The performance of the SMLR algorithm can be pre-
dicted from the value of P, (k'). However, the derivation of P.(k")
is extremely difficult if not impossible. The analysis below is based
on a heuristic approach that the mean value of A(k’, ¢,), Elln A(K',
g,)], which is then computable and is a function of both SNR and
wavelet characteristics, is used to analyze the performance depen-
dence of the SMLR algorithm on both SNR and wavelet character-
istics. The larger E[in A(k’, ¢,)] indicates that the corresponding
case such as a correct detection, a false alarm and removal of a
false alarm occurs more likely.

The true g(k) for a small A is a sparse spike train which basically
consists of isolated single spikes and pairs of two close spikes.
Various aspects of performance including false alarms, correct de-
tections and the resolution can be unravelled by considering two
major cases. The first one (case I below) is that the true ¢, denoted
g7, consists of a single spike located at time point k = ki, i.e.,
gr(k) = 8(k — k). The second one (case II below) is that gr(k)
consists of two spikes located at time points k; and &, i.e., qr(k)
= 6(k — k) + 8(k — k). At each iteration the SMLR algorithm
only makes a single change at k = k. The local region centered at
k = k' can be thought of as one of these two cases when A is small.
Three specific reference sequences (I-A through I-C and II-A
through II-C below) in each of the two cases are considered be-
cause they are most usual cases during the operation of the SMLR
algorithm by our experience. However, even when \ is small, a
g(k) could also include a group of three close spikes. Although this
case is not considered here, this case occurs much less likely than
the two major cases and the conclusions obtained from the follow-
ing analysis should still be correct for the rest part of g(k). Fur-
thermore, to perform the analysis, we need the following lemma:

Lemma I: Assume that g in which g(k) = 1 only for k = ki,
ks, - * -, ky, includes all true spikes as well as some false alarms.
Then, the error variances of ryy (k;), forall 1 =i < L, approach
zero as SNR approaches infinity.

The proof of Lemma 1 is given in Appendix A.

The three specific reference sequences considered below include
g, (k) = 0 (no spikes in g,) for (I-A) and (II-A), q,(k)y = 8k — ky)
(a true spike in g,) for (I-B) and (II-B), and g, k) =6k —m), m
# k., m # k, (a false alarm in g,) for (I-C) and (II-C). We now

analyze what determines the performance of the SMLR algorithm
for (I-A) and (II-A). The other cases can be similarly performed
for completeness and thus are omitted.

Case I: qrk) = 6(k — ky):

I-A: g,(k) = 0, no spikes in g,:

The measurement vector z for this case can be easily seen from
(4) to be

z =rk)y, + n. (15)
One can also see, from (6), (10), and (9), that @, = all, a; =
¢(0)/0; and
1 1
fi=0i9 "2 = etk — kork) + 5 vin (16)
n n

from which and (8) one can show that

_F
21 + F)

1

Elin Ak, g,)] (1 + Fy*tk — k)]

1
—Eln(l+F)+ln]_)\

11 1
5+5Ffw—knfimF+m

= A, (k, k)

i

I =X
(since F >> 1) (17)

where we have used (17) to define A, (k, k;). Next, we discuss the
effects of v (k) and F on the performance based on (17).
Let us consider all possible cases about k' as follows:

(I-A-1) k' = k,, a correct detection occurs;
(I-A-2) k' # k,, a false alarm occurs.

From (17), we see that max {E[ln A(k. ¢,)]} = Elln Ak, )}
Let

A() = E[ln Ak, g)] — Elln Ak, g,)]
=1 — vk — kDIF/2. (18)

It is easy to see that 0 < A(k) < F/2 and that A (k) increases as
F increases and 72(k) decreases but has nothing to do with the
length of v (k) which is about twice the length of (k). When the
mainlobe of v (k) is narrow (i.e., vik) << 1 fork # 0), A(k) =
(F/2) for k # k,. However, when the mainlobe of « (k) is broad
(i.e., y2(k) = 1, |k| = Wforsome W) it is then possible that A (k)
for |k — k,| < W is very small when F is not large enough. In
other words, a false alarm associated with the true spike located at
k = k, could occur near k = k; when the mainlobe of (k) is broad
and F is not large. Finally, A (k) for k # k, can be made arbitrarily
large by increasing F or SNR. Therefore, we conclude that the per-
formance is better for larger F and v (k) with a narrower mainlobe.

Case II: qr(k) = 6(k — k) + 6k — k), ky # ky:

II-A: q,(k) = 0, no spikes in g,

The mean of log-likelihood ratio In A (k, ¢,) can be shown to be

1
Elin Atk g1 = Ak k) + S Py’ — k). (19)
Let us consider the following situations for k":

(II-A-1) k' = k,, a correction detection occurs:
(II-A-2) k' = k,, a correction detection occurs;
(II-A-3) k' # ky, k' # ky, a false alarm occurs.

From (19) and (17), we see that max {E[In A (k, )1} = Elln Ak,
¢,) = Elln A(k,, q,)] when the mainlobe of v (k) is narrow. We
can infer that when the mainlobe of « (k) is narrow, E[In A (k;, ¢,)]
= E[ln A(k,, q,)] >> Elln A(k, g,)] fork # k, and k # k,. How-
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ever, max {E[In A(k, g,)]} could happen at some k where k| < k
< k, when k, is close to k, and the mainlobe of vy (k) is broad. In
other words, two close spikes could lead to a false alarm located
between k = k, and k = k, when the mainlobe of v (k) is broad.
This also implies that the resolution is better for -y (k) with a narrow
mainlobe than for v (k) with a broad mainlobe.

From the performed analyses we obtain the following conclu-
sions:

(R1) The performance is better for a larger SNR and v (k) with
a narrower mainlobe;

(R2) the resolution is better for v (k) with a narrower maintobe;

(R3) the performance is not dependent on the wavelet length;

(R4) the performance can be infinitely improved by increasing
SNR no matter when the mainlobe of +y (k) is broad or nar-
row;

(R5) when the mainlobe of vy (k) is broad, false alarms cannot
be removed by increasing SNR, but their amplitudes tend
to be smaller for a larger SNR by Lemma 1;

(R6) for the same performance, a higher SNR is required for
v (k) with a broad mainlobe than for vy (k) with a narrow
mainlobe.

IV. SIMULATION EXAMPLES

In order to illustrate the analytic results presented in Section III,
we selected two different wavelets v, (k) (solid line) and v, (k)
(dashed line) shown in Fig. 1(a). The associated normalized au-
tocorrelation functions vy, (k) (solid line) and v, (k) (dashed line)
are shown in Fig. 1(b) which apparently indicates the different
mainlobe widths of v, (k) and v, (k). The synthetic data was gen-
erated with parameters X = 0.07 and o = 0.0225. g(k) = O for
all k£ was used to initialize the SMLR algorithm. The deconvolved
results associated with v, (k) and v, (k) are shown in Figs. 2 and 3,
respectively, where *’s denote true spikes and bars denote esti-
mated ones.

From Fig. 2, where SNR = 10 dB, we see that the deconvolved
results are very good in spite of two false alarms and five missing
spikes whose amplitudes are too small to be detected since SNR is
not high enough. Note that the two close spikes located at k = 55
and 57 were correctly detected, and the two close spikes located at
k = 262 and 263 were also correctly detected. These results are
consistent with the predicted results (R1) and (R2) since the main-
lobe of #, (k) is narrow.

From Fig. 3(a) where SNR = 10 dB, we see that only one spike
at k = 288 was correctly detected. The other bars in this figure are
all false alarms. As analyzed in case I-A, each false alarm is as-
sociated with an isolated spike in its vicinity. Note that the two
spikes at & = 55 and 57 were converted into a false alarm at k =
56, and the two spikes at k = 57 and k = 66 led to a false alarm
at k = 61. These observations are consistent with (R2).

Next, let us compare Fig. 2 with Fig. 3(a) where both SNR’s are
equal to 10 dB. Although the wavelet lengths of v, (k) and v, (k)
are about the same, the mainlobe widths of v, (k) and v, (k) are very
different. Obviously, the results shown in Fig. 2 are much better
than those shown in Fig. 3(a). Again, this is consistent with (R1)
and (R3).

Figs. 3(b) and (c) show the deconvolved results for SNR equal
to 30 and 40 dB, respectively. From Fig. 3(b), one can see that
there are more correct detections but there are still many false
alarms. These results are consistent with (RS). From Fig. 3(c),
again, one can see that there are still many false alarms in spite of
increase of SNR. Nevertheless, false alarm amplitudes and ampli-
tude estimation errors of detected spikes decrease as SNR in-
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Fig. 1. (a) Wavelets v, (k) (solid line) as well as v, (k) (dashed line) and
(b) the associated normalized correlation functions v, (k) (solid line) as well
as 7, (k) (dashed line).
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Fig. 2. Deconvolved results associated with v (k) for SNR = 10 dB. *’s
denote true spikes and bars denote estimates.

creases. Again, these results are consistent with the previous con-
clusions (R4) and (RS).

Finally, comparing Fig. 2 where SNR = 10 dB with Fig. 3(c)
where SNR = 40 dB, we see that their performances are compa-
rable but SNR’s are very different. This is also consistent with our
conclusion (R6).

V. CONCLUSIONS

In this correspondence, we have presented an analysis based on
a heuristic approach for the performance of a well-known subop-
timal iterative MLD algorithm, the SMLR algorithm, for B-G pro-
cesses assuming that A, ¢, and o2 and v(k) were given a priori.
From this analysis, we obtained six main conclusions (R1) through
(R6) summarized at the end of Section III with regard to the per-
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Fig. 3. Deconvolved results associated with v, (k) for (a) SNR = 10 dB,
(b) SNR = 30 dB, and (c) SNR = 40 dB, respectively. *’s denote true
spikes and bars denote estimates.

formance dependence of the SMLR algorithm upon both SNR and
the mainlobe width of the normalized autocorrelation function v (k)
of v(k). The performance of the linear minimum-variance decon-
volution (MVD) filter [13], [14] with u(k) treated as a white noise
instead of a B-G signal is determined by the bandwidth or length
of v(k) instead of the mainlobe width of v (k) on which the perfor-
mance of the SMLR algorithm depends. We finally showed some
simulation results to support the presented analysis.

APPENDIX A
PrROOF OF LEMMA 1

The estimation error of ry (k) for g(k) = 1 is defined as

e(ky = r(k) — ruc (k). (AD
The vector model for z given by (4) can also be expressed as
z=Wu+n (A2)

where u = (r(ky), r(ky), -, rkn)) and W = (0, Vg~ s
vy,). It is well known that the maximum-likelihood estimate u is
equal to the minimum-variance estimate since z and u are jointly
Gaussian as follows:

Uy = uyy = Elulz] = o} W' (0] WW' + i)'z (A3
which is surely consistent with (11). It is also well known that [12]
Elee'] = 62l — a* W/ [2WW' + o, 117'W
-1
1 1 w'w 1
ol — atw’ {—2] - = W[——z— + —2} W'} W
[ g ag

n n n r

1 1
ol — aiW’ {—21 - S W+ @/ eHyWw W)}
Ull

n

‘ (W'W)*'W'} w. (Ad)

From (A4), we have that

I’im Elee']

U”_’O

2 . 1 1
ol = lim o2w {—21 -

a,=0 On Ty

S W - (02 eH W W) (W’W)"W’}W

ol — ol = 0.

(A5)

In deriving (A5), we have used the first-order Taylor series ap-
proximation. From (12), we see that SNR is inversely proportional
to of,. Therefore, (A5) leads to Lemma 1.
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On the Efficiency of Parallel Pipelined Architectures

Luciano da Fontoura Costa and Jan Frans Willem Slaets

Abstract—This correspondence describes an approach to help the de-
sign of efficient dedicated parallel pipelined architectures. Based on a
previous publication where conditions for determining the most effi-
cient mapping of digital signal processing algorithms are proposed, we
develop a new approach that eliminates the restrictions and deficien-
cies in that paper. As an example of the presented approach, we design
an efficient parallel pipelined architecture for the ‘‘butterfly’’ of a fast
Fourier transform algorithm using operators with different execution
rates.

[. INTRODUCTION

The use of dedicated computer architectures is growing rapidly
in digital signal processing (DSP) and image processing. Consid-
erable efforts have been made to enhance the performance of these
systems not only by optimizing the algorithms, such as trying to
minimize arithmetic operations (e.g., [2]), but also through the de-
sign of special hardware such as dedicated parallel pipelines archi-
tectures. Several DSP (e.g., FFT, filtering, and convolution) and
image processing algorithms (e.g., border detection, filtering, cor-
relation, Hough transform), usually with regular and deterministic
processing sequences, are suitable for implementation in such ar-
chitectures ([1] and [3]).

This correspondence presents a methodology to help the synthe-
sis of dedicated parallel pipelined architectures in order to optimize
the utilization of the hardware resources. This subject has already
been worked by Siomalas and Bowen [1], however, that paper has
been prejudiced by the following deficiencies:

1) The definition of #; (1) in Section II-C is not appropriate:

o .
- ] = an integer. (1

t =

i

i

For example, fora given i, if N; = 2and r = 10° ops (operations
per second), we have that t, = [2 x 107¢/p;] = 1forp, = 2 X
107% (please refer to [1] for the meaning of t;, N;, r, and p)).

A more appropriate definition is

Ni|1
f; = |—| = = a real number. 2)
pilr

2) The inadequate definition of ¢, invalidates Theorems 1 and 2.
3) The proof of Theorems 1 and 2 considers only situations
where all the operators have the same operation rate r.
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4) The condition for maximum efficiency with different operator
rates in Section II-E is not correct. For example, if we apply that
result for the first and second stage of pipeline from the optimal
efficiency solution shown in Fig. 3 in Section VI of this paper, we
have N, = 4; N, = 4; P, . = 2; P, . = 4;r_, = 0.5 X 10° ops;
r, + = 10% ops. Although we know that there is a solution (Fig. 3),
the sixth expression in Section II-E of [1] does not hold:

4 . 4
2x05x%x10°7 4x1

0 # an integer f.

stage 1 stage 2

Besides these deficiencies, there are also unnecessary formal-
izations in [1]. We present a new approach which is simpler, more
consistent, and allows a more practical and general syrithesis of
efficient parallel pipelined architectures.

II. CONSIDERATIONS AND DEFINITIONS

A parallel pipelined architecture intended to execute a specific
algorithm is here understood as a pipelined architecture with par-
allel operation within each of its stages, each stage corresponding
to a level of the algorithm. The following definitions and assump-
tions are used henceforth:

1) An algorithm is defined as a finite number of operations par-
titioned into N levels.

2) A level in the algorithm is defined as the set of operations
which can be started simultaneously. It is easy to verify that the
levels, as defined, are determined from the interdependence of in-
termediate results in the algorithm.

3) An algorithm with the above characteristics can be imple-
mented in a dedicated parallel pipelined architecture composed of
N stages, each stage corresponding to one of the N levels of the
algorithm. The operations in each stage are then performed by suit-
able operators.

4) The algorithm is continuously executed by the dedicated par-
allel pipelined architecture.

5) There are k; types of operators in each level i = 1, 2,0,
N. These operators can be simple operators such as adders and mul-
tipliers or complex operators such as the “‘butterfly’’ of an FFT.

6) The efficiency is defined in a similar way to [1] in order to
express the utilization of the hardware resources (operators).

III. CONDITIONS FOR MAXIMUM EFFICIENCY

The efficiency of a parallel pipelined architecture is maximum
(tends to 1) if and only if for each type j of operator (j € {1, 2,
-+ +, k;}) within each stage i of the pipeline (i € {1,2, - - -, N})
conditions (3) and (4) are both met:

F;
Ti'j:F'.;t"/z T ©)]
F; ; is an integer multiple of P; ; 4)
where
F; ; number of operations of type j in level i of the algorithm,

T;,; the time interval for execution of all operations of type j in
stage i of the pipeline,

P; ; number of operators of type j in stage i of the processor,

t;; execution time for one execution of operator of type j in
stage I,

T  areal number representing the basic cycle time of the pipe-
line.
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